Chiral Membranes


Fundamental technologies for the next generation of biotechnological processes

BMBF Logo BMBF   Chiral membranes Bio VI

In all organisms , ions and chiral compounds are selectively transported through membranes by channel proteins . Chiral compounds are molecules of identical shape , size and charge that only structurally differ in the orientation of at least one molecule residue . The goal of the tandem project " Chiral membranes " of the Schwaneberg group at RWTH Aachen and the Böker work group at IAP Fraunhofer Potsdam is to synthesize membranes from protein building blocks which can enable a separation of enantiomer mixtures . These membranes will lead to the generation of a novel biotechnological technique for the separation and downstream processing of compounds. This work is conducted by members of our Hybrid Catalysis & High Throughput Screening division.

Chiral Separation with the help of tailored FhuA channel proteins

As a biological component , variants of the iron transporting protein ferric hydroxamate uptake protein component A“ - FhuA - will be produced with two parallel strategies . FhuA is a β-barrel shaped transmembrane protein located in the outer membrane of E . coli . The strategies will apply a FhuA channel protein with either a " closed " or " open" channel , respectively . Both strategies aim at modifiying the interior of the channel in a way that enables the chiral separation of two enantiomers , in the case of this project two enantiomeric amino acids .

Anchoring a channel into a membrane

A further target of the project is the engineering of FhuA channel`s surface towards an improved conjugation of polymer chains . These chains will be grafted from discretely postioned lysine residues that are arranged in plane orientation explicitely at the outer surface . The FhuA-polymer conjugates then serve as a starting point for the synthesis of FhuA-polymer membranes . Combining both approaches of interior and exterior protein engineering will finally provide a FhuA-polymer membrane capable of separating enanatiomeric amino acid mixtures .

Would you like to know more?

Please feel free to check a report on this project at the Bioö website - article in German language -.


Publications resulting from the project "Chiral Membranes"

Charan, H., Glebe, U., Anand, D., Kinzel, J., Zhu, L., Bocola, M., Mirazaei Garakani, T., Schwaneberg, U., Böker, A. (2017). Nano-thin walled micro-compartments from transmembrane protein-polymer conjugates. Soft matter, 2017, 13, 2866-2875.

- An illustrated short summary of this publication can be found on our Publications and Patents website -

Charan, H., Kinzel, J., Glebe, U., Anand, D., Mirzaei Garakani, T., Zhu, L., Bocola, M., Schwaneberg, U., Böker, A. (2016). Grafting PNIPAAm from ß-barrel shaped transmembrane nanopores. Biomaterials, 107, 115-123.

- An illustrated short summary of this publication can be found among our Research Highlights -